Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Indian J Hum Genet ; 2011 Jan; 17(1): 29-32
Article in English | IMSEAR | ID: sea-138929

ABSTRACT

Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is one of the genetic defects of mitochondrial fatty acid beta-oxidation presenting in early infancy or childhood. If undiagnosed and untreated, VLCAD deficiency may be fatal, secondary to cardiac involvement. We assessed the effect of replacing part of the fat in the diet of a 2 ½-month-old male infant, who was diagnosed with VLCAD deficiency,with medium-chain triglyceride (MCT) oil and essential fats. The patient presented with vomiting, dehydration, and was found to have persistent elevation of liver function tests, hepatomegaly, pericardial and pleural effusion, right bundle branch block, and biventricular hypertrophy. Because of the cardiomyopathy, hepatomegaly, and an abnormal acylcarnitine profile and urine organic acids, he was suspected of having VLCAD deficiency. This was confirmed on acyl-coA dehydrogenase, very long chain (ACADVL) gene analysis. He was begun on an MCT oil-based formula with added essential fatty acids, uncooked cornstarch (around 1 year of age), and frequent feeds. By 7 months of age, cardiomyopathy had reversed and by 18 months of age, all cardiac medications were discontinued and hypotonia had improved such that physical therapy was no longer required. At 5 years of age, he is at the 50th percentile for height and weight along with normal development. Pediatricians need to be aware about the basic pathophysiology of the disease and the rationale behind its treatment as more patients are being diagnosed because of expansion of newborn screen. The use of MCT oil as a medical intervention for treatment of VLCAD deficiency remains controversial mostly because of lack of clear phenotype-genotype correlations, secondary to the genetic heterogeneity of the mutations. Our case demonstrated the medical necessity of MCT oil-based nutritional intervention and the need for the further research for the development of specific guidelines to improve the care of these patients.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Carnitine/chemistry , Child , Cardiomyopathy, Hypertrophic/diet therapy , DIETARY FATS ---ADMINISTRATION & , Dietary Fats/therapeutic use , Humans , Infant , Lipid Metabolism, Inborn Errors/genetics , Male , Metabolism, Inborn Errors , Triglycerides/administration & dosage , Triglycerides/analogs & derivatives , Triglycerides/therapeutic use
2.
SPJ-Saudi Pharmaceutical Journal. 2010; 18 (4): 195-206
in English | IMEMR | ID: emr-123475

ABSTRACT

In the last few years, cancer chemotherapy has been successfully employed in the treatment of different types of human tumours. Unfortunately, the optimal clinical usefulness of this important treatment modality is usually limited secondary to the development of life-threatening multiple organ toxicity. Cancer chemotherapy may cause these toxic effects by mechanisms not involved in their anticancer activity that can severely affect the life of patients and represent a direct cause of death. Several experimental and clinical studies have demonstrate that some important anticancer drugs interfere with the absorption, synthesis, and excretion of carnitine in non-tumour tissues, resulting in a secondary carnitine deficiency which is reversed by carnitine treatment without affecting anticancer therapeutic efficacy. Prototypes of anticancer drugs that alter carnitine system are doxorubicin, cisplatin, carboplatin, oxaliplatin, cyclophosphamide and ifosfamide. Furthermore, cachectic cancer patients are especially at risk for carnitine deficiency due to decreased oral intake and/or increased renal losses. Altered serum and urine carnitine levels have been reported in cancer patients with various forms of malignant diseases. Recent studies in our laboratory have demonstrated that carnitine deficiency constitute a risk factor and should be viewed as a mechanism during development of oxazaphosphorines-induced cardiotoxicity in rats. Similarly, inhibition of gene expression of heart fatty acid-binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model has been reported. In view of these facts and in view of irreplaceability of these important anticancer drugs, this review aimed to highlight the role of carnitine depletion and supplementation during development of chemotherapy-induced multiple organ toxicity


Subject(s)
Antineoplastic Agents/toxicity , Vitamin B Deficiency , Carnitine/pharmacokinetics , Carnitine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL